• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the degradation of selected recalcitrant organic contaminants through integrated cathode and anode processes in microbial electrochemical systems: A frontier review

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Enhancing the degradation of selected recalcitrant organic contaminants through integrated cathode and anode processes in microbial electrochemical systems A frontier review.pdf (2.394Mb)
    Date
    2022-11-01
    Author
    Yang, Kaichao
    Abu-Reesh, Ibrahim M.
    He, Zhen
    Metadata
    Show full item record
    Abstract
    Microbial electrochemical system (MES) technology has been widely investigated for organic degradation. However, the removal of recalcitrant organic contaminants containing halogen-, nitro-, or azo-groups remains a great challenge. Integrating the cathodic and anodic processes in an MES is able to improve or complete the mineralization of the target halogen-, nitro- and azo-organics via a sequential reductive and oxidative process. In this way, a cathode is used to reduce the toxic target organics, while an anode is to oxidize the residual organics from the reduction process and at the same time generate electrons to support the reduction process. This paper has provided a concise review about the sequential cathode-anode contaminant degradation in an MES and its specific mechanisms. Potential strategies to improve the MES degradation performance were discussed, mainly including the application and development of the biocatalyzed cathode as well as the optimization of the anodic operating condition and the improvement of anodic bacteria and electrode material. Perspectives on future directions were proposed and the key challenges were identified as the competitive or inhibitive influence of other compounds that could coexist in real wastewater on the target contaminants.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130791646&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.hazl.2022.100057
    http://hdl.handle.net/10576/37655
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video