عرض بسيط للتسجيلة

المؤلفQinggang, Su
المؤلفKhan, Habib Ullah
المؤلفKhan, Imran
المؤلفChoi, Bong Jun
المؤلفWu, Falin
المؤلفAly, Ayman A.
تاريخ الإتاحة2022-12-27T11:09:51Z
تاريخ النشر2021-04-21
اسم المنشورEnergy Reports
المعرّفhttp://dx.doi.org/10.1016/j.egyr.2021.04.022
الاقتباسSu, Q., Khan, H. U., Khan, I., Choi, B. J., Wu, F., & Aly, A. A. (2021). An optimized algorithm for optimal power flow based on deep learning. Energy Reports, 7, 2113-2124.
الرقم المعياري الدولي للكتاب2352-4847
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2352484721002389
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37686
الملخصWith the increasing requirements for power system transient stability assessment, the research on power system transient stability assessment theory and methods requires not only qualitative conclusions about system transient stability but also quantitative analysis of stability and even development trends. Judging from the research and development process of this direction at home and abroad in recent years, it is mainly based on the construction of quantitative index models to evaluate its transient stability and development trend. Regarding the construction theories and methods of quantitative index models, a lot of results have been achieved so far. The research ideas mainly focus on two categories: uncertainty analysis methods and deterministic analysis methods. Transient stability analysis is one of the important factors that need to be considered. Therefore, this paper proposed an optimized algorithm based on deep learning for preventive control of the transient stability in power systems. The proposed algorithm accurately fits the generator’s power and transient stability index through a deep belief network (DBN) by unsupervised pre-training and fine-tuning. The non-linear differential–algebraic equation and complex transient stability are determined using the deep neural network. The proposed algorithm minimizes the control cost under the constraints of the contingency by realizing the data-driven acquisition of the optimal preventive control. It also provides an efficient solution to stability and reliability rules with similar safety into the corresponding control model. Simulation results show that the proposed algorithm effectively improved the accuracy and reduces the complexity as compared with existing algorithms.
راعي المشروعNational Research Foundation of Korea [2019R1C1C1007277].
اللغةen
الناشرElsevier
الموضوعPower systems
Deep learning
Transient stability
Power optimization
Sustainable energy
العنوانAn optimized algorithm for optimal power flow based on deep learning
النوعArticle
الصفحات2113-2124
رقم المجلد7
Open Access user License http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة