• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fusion of Machine Learning and Privacy Preserving for Secure Facial Expression Recognition

    Thumbnail
    View/Open
    6673992.pdf (3.051Mb)
    Date
    2021-01-30
    Author
    Ullah, Asad
    Wang, Jing
    Anwar, M. Shahid
    Ahmad, Arshad
    Nazir, Shah
    Khan, Habib Ullah
    Fei, Zesong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The interest in Facial Expression Recognition (FER) is increasing day by day due to its practical and potential applications, such as human physiological interaction diagnosis and mental disease detection. This area has received much attention from the research community in recent years and achieved remarkable results; however, a significant improvement is required in spatial problems. This research work presents a novel framework and proposes an effective and robust solution for FER under an unconstrained environment; it also helps us to classify facial images in the client/server model along with preserving privacy. There are a lot of cryptography techniques available but they are computationally expensive; on the other side, we have implemented a lightweight method capable of ensuring secure communication with the help of randomization. Initially, we perform preprocessing techniques to encounter the unconstrained environment. Face detection is performed for the removal of excessive background and it detects the face in the real-world environment. Data augmentation is for the insufficient data regime. A dual-enhanced capsule network is used to handle the spatial problem. The traditional capsule networks are unable to sufficiently extract the features, as the distance varies greatly between facial features. Therefore, the proposed network is capable of spatial transformation due to the action unit aware mechanism and thus forwards the most desiring features for dynamic routing between capsules. The squashing function is used for classification purposes. Simple classification is performed through a single party, whereas we also implemented the client/server model with privacy measurements. Both parties do not trust each other, as they do not know the input of each other. We have elaborated that the effectiveness of our method remains unchanged by preserving privacy by validating the results on four popular and versatile databases that outperform all the homomorphic cryptographic techniques.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100611752&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2021/6673992
    http://hdl.handle.net/10576/37692
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video