Show simple item record

AuthorKhan, Sulaiman
AuthorNazir, Shah
AuthorKhan, Habib Ullah
Available date2022-12-28T06:35:43Z
Publication Date2021-01-12
Publication NameComputers, Materials & Continua
Identifierhttp://dx.doi.org/10.32604/cmc.2021.013878
CitationKhan, S., Nazir, S., & Khan, H. U. (2021). Smart object detection and home appliances control system in smart cities. Computers, Materials and Continua, 67(1), 895-915.
ISSN1546-2218
URIhttp://hdl.handle.net/10576/37698
AbstractDuring the last decade the emergence of Internet of Things (IoT) based applications inspired the world by providing state of the art solutions to many common problems. From traffic management systems to urban cities planning and development, IoT based home monitoring systems, and many other smart applications. Regardless of these facilities, most of these IoT based solutions are data driven and results in small accuracy values for smaller datasets. In order to address this problem, this paper presents deep learning based hybrid approach for the development of an IoT-based intelligent home security and appliance control system in the smart cities. This hybrid model consists of; convolution neural network and binary long short term model for the object detection to ensure safety of the homes while IoT based hardware components like; Raspberry Pi, Amazon Web services cloud, and GSM modems for remotely accessing and controlling of the home appliances. An android application is developed and deployed on Amazon Web Services (AWS) cloud for the remote monitoring of home appliances. A GSM device and Message queuing telemetry transport (MQTT) are integrated for communicating with the connected IoT devices to ensure the online and offline communication. For object detection purposes a camera is connected to Raspberry Pi using the proposed hybrid neural network model. The applicability of the proposed model is tested by calculating results for the object at varying distance from the camera and for different intensity levels of the light. Besides many applications the proposed model promises for providing optimum results for the small amount of data and results in high recognition rates of 95.34% compared to the conventional recognition model (k nearest neighbours) recognition rate of 76%.
SponsorQatar University [IRCC-2020-009].
Languageen
PublisherTech Science Press
SubjectHybrid deep learning model
IoT
smart cities
home appliances control system
Amazon web services
TitleSmart Object Detection and Home Appliances Control System in Smart Cities
TypeArticle
Pagination895-915
Issue Number1
Volume Number67
ESSN1546-2226
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record