عرض بسيط للتسجيلة

المؤلفZehra, Wisha
المؤلفJaved, Abdul Rehman
المؤلفJalil, Zunera
المؤلفKhan, Habib Ullah
المؤلفGadekallu, Thippa Reddy
تاريخ الإتاحة2022-12-28T07:09:15Z
تاريخ النشر2021-01-11
اسم المنشورComplex and Intelligent Systems
المعرّفhttp://dx.doi.org/10.1007/s40747-020-00250-4
الاقتباسZehra, W., Javed, A. R., Jalil, Z., Khan, H. U., & Gadekallu, T. R. (2021). Cross corpus multi-lingual speech emotion recognition using ensemble learning. Complex & Intelligent Systems, 7(4), 1845-1854.
الرقم المعياري الدولي للكتاب2199-4536
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85134055561&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/37702
الملخصReceiving an accurate emotional response from robots has been a challenging task for researchers for the past few years. With the advancements in technology, robots like service robots interact with users of different cultural and lingual backgrounds. The traditional approach towards speech emotion recognition cannot be utilized to enable the robot and give an efficient and emotional response. The conventional approach towards speech emotion recognition uses the same corpus for both training and testing of classifiers to detect accurate emotions, but this approach cannot be generalized for multi-lingual environments, which is a requirement for robots used by people all across the globe. In this paper, a series of experiments are conducted to highlight an ensemble learning effect using a majority voting technique for cross-corpus, multi-lingual speech emotion recognition system. A comparison of the performance of an ensemble learning approach against traditional machine learning algorithms is performed. This study tests a classifier’s performance trained on one corpus with data from another corpus to evaluate its efficiency for multi-lingual emotion detection. According to experimental analysis, different classifiers give the highest accuracy for different corpora. Using an ensemble learning approach gives the benefit of combining all classifiers’ effect instead of choosing one classifier and compromising certain language corpus’s accuracy. Experiments show an increased accuracy of 13% for Urdu corpus, 8% for German corpus, 11% for Italian corpus, and 5% for English corpus from with-in corpus testing. For cross-corpus experiments, an improvement of 2% when training on Urdu data and testing on German data and 15% when training on Urdu data and testing on Italian data is achieved. An increase of 7% in accuracy is obtained when testing on Urdu data and training on German data, 3% when testing on Urdu data and training on Italian data, and 5% when testing on Urdu data and training on English data. Experiments prove that the ensemble learning approach gives promising results against other state-of-the-art techniques.
اللغةen
الناشرSpringer
الموضوعCross-corpus
Cross-lingual
Ensemble learning
Feature extraction
Machine learning
Speech emotion recognition
العنوانCross corpus multi-lingual speech emotion recognition using ensemble learning
النوعArticle
الصفحات1845-1854
رقم العدد4
رقم المجلد7
ESSN2198-6053
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة