• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Semantic Segmentation and Multi-Class Skin Lesion Classification Based on Convolutional Neural Network

    Thumbnail
    View/Open
    Deep_Semantic_Segmentation_and_Multi-Class_Skin_Lesion_Classification_Based_on_Convolutional_Neural_Network.pdf (2.414Mb)
    Date
    2020-07-14
    Author
    Anjum, Muhammad Almas
    Amin, Javaria
    Sharif, Muhammad
    Khan, Habib Ullah
    Malik, Muhammad Sheraz Arshad
    Kadry, Seifedine
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Skin cancer is developed due to abnormal cell growth. These cells are grown rapidly and destroy the normal skin cells. However, it's curable at an initial stage to reduce the patient's mortality rate. In this article, the method is proposed for localization, segmentation and classification of the skin lesion at an early stage. The proposed method contains three phases. In phase I, different types of the skin lesion are localized using tinyYOLOv2 model in which open neural network (ONNX) and squeeze Net model are used as a backbone. The features are extracted from depthconcat7 layer of squeeze Net and passed as an input to the tinyYOLOv2. The propose model accurately localize the affected part of the skin. In Phase II, 13-layer 3D-semantic segmentation model (01 input, 04 convolutional, 03 batch-normalization, 03 ReLU, softmax and pixel classification) is used for segmentation. In the proposed segmentation model, pixel classification layer is used for computing the overlap region between the segmented and ground truth images. Later in Phase III, extract deep features using ResNet-18 model and optimized features are selected using ant colony optimization (ACO) method. The optimized features vector is passed to the classifiers such as optimized (O)-SVM and O-NB. The proposed method is evaluated on the top MICCAI ISIC challenging 2017, 2018 and 2019 datasets. The proposed method accurately localized, segmented and classified the skin lesion at an early stage.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089508765&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3009276
    http://hdl.handle.net/10576/37772
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video