An efficient approach for textual data classification using deep learning
المؤلف | Alqahtani, Abdullah |
المؤلف | Ullah Khan, Habib |
المؤلف | Alsubai, Shtwai |
المؤلف | Sha, Mohemmed |
المؤلف | Almadhor, Ahmad |
المؤلف | Iqbal, Tayyab |
المؤلف | Abbas, Sidra |
تاريخ الإتاحة | 2022-12-29T07:18:04Z |
تاريخ النشر | 2022-09-15 |
اسم المنشور | Frontiers in Computational Neuroscience |
المعرّف | http://dx.doi.org/10.3389/fncom.2022.992296 |
الاقتباس | Alqahtani, A., Khan, H. U., Alsubai, S., Sha, M., Almadhor, A., Iqbal, T., & Abbas, S. (2022). An efficient approach for textual data classification using deep learning. Frontiers in Computational Neuroscience, 16. |
الرقم المعياري الدولي للكتاب | 1662-5188 |
الملخص | Text categorization is an effective activity that can be accomplished using a variety of classification algorithms. In machine learning, the classifier is built by learning the features of categories from a set of preset training data. Similarly, deep learning offers enormous benefits for text classification since they execute highly accurately with lower-level engineering and processing. This paper employs machine and deep learning techniques to classify textual data. Textual data contains much useless information that must be pre-processed. We clean the data, impute missing values, and eliminate the repeated columns. Next, we employ machine learning algorithms: logistic regression, random forest, K-nearest neighbors (KNN), and deep learning algorithms: long short-term memory (LSTM), artificial neural network (ANN), and gated recurrent unit (GRU) for classification. Results reveal that LSTM achieves 92% accuracy outperforming all other model and baseline studies. |
راعي المشروع | Qatar University [IRCC-2021-010]. |
اللغة | en |
الناشر | Frontiers |
الموضوع | deep learning machine learning text categorization text classification text data |
النوع | Article |
رقم المجلد | 16 |
ESSN | 1662-5188 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
المحاسبة ونظم المعلومات [527 items ]