Compressive sensing based electronic nose platform
المؤلف | Djelouat, Hamza |
المؤلف | Ait Si Ali, Amine |
المؤلف | Amira, Abbes |
المؤلف | Bensaali, Faycal |
تاريخ الإتاحة | 2022-12-29T07:34:44Z |
تاريخ النشر | 2017 |
اسم المنشور | Digital Signal Processing: A Review Journal |
المصدر | Scopus |
الملخص | Electronic nose (EN) systems play a significant role for gas monitoring and identification in gas plants. Using an EN system which consists of an array of sensors provides a high performance. Nevertheless, this performance is bottlenecked by the high system complexity incorporated with the high number of sensors. In this paper a new EN system is proposed using data sets collected from an in-house fabricated 4x4 tin-oxide gas array sensor. The system exploits the theory of compressive sensing (CS) and distributed compressive sensing (DCS) to reduce the storage capacity and power consumption. The obtained results have shown that compressing the transmitted data to 20% of its original size will preserve the information by achieving a high reconstruction quality. Moreover, exploiting DCS will maintain the same reconstruction quality for just 15% of the original size. This high quality of reconstruction is explored for classification using several classifiers such as decision tree (DT), K-nearest neighbour (KNN) and extended nearest neighbour (ENN) along with linear discrimination analysis (LDA) as feature reduction technique. CS-based reconstructed data has achieved a 95% classification accuracy. Furthermore, DCS-based reconstructed data achieved a 98.33% classification accuracy which is the same as using original data without compression. 2016 Elsevier Inc. |
راعي المشروع | This paper was made possible by National Priorities Research Program (NPRP) grant No. 5-080-2-028 from the Qatar National Research Fund (a member of Qatar Foundation). Also, we would like to thank Prof. Amine Bermak (Hamad bin Khalifa University, Qatar) for providing the data used in this paper. The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Classification Compressive sensing Distributed compressive sensing Gas sensors Reconstruction algorithms |
النوع | Article |
الصفحات | 350-359 |
رقم المجلد | 60 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الذكاء المعلوماتي [93 items ]