• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault tolerant approach for verified software: Case of natural gas purification simulator

    Thumbnail
    Date
    2013-12-01
    Author
    Ibrahim, S. K.
    Boulifa, B.
    Jaoua, A.
    Elloumi, S.
    Saleh, M.
    Van Den Broeke, L. J.P.
    Abu-Reesh, I. M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Well logically verified and tested software may fail because of undesired physical phenomena provoking transient faults during its execution. While being the most frequent kind of faults, transient faults are difficult to localize because they have a very short life, but they may cause the failure of software. A fault tolerant method against transient faults under the hypothesis of statically verified software is presented. In order to ensure the right experimental environment, first the specification of the application is validated by Alloy analyzer, second a JML annotated Java code is statically verified. The proposed approach is based on some rules transforming basic Java statements like assignments, conditional and iterative statements into equivalent fault tolerant ones. The current research has exhibited some natural redundancy in any code, and the corrective power of repetitive statements. It also proved that the proposed method makes more efficient fault tolerant versions compared with natural error recovery, i.e. without inserting any additional code for detecting or repairing the damaged state. Illustrated by Gas purification simulator, one can see the natural error recovery in case of fault injection in the code, and how fault tolerant rules recover more errors in less time compared to the natural recovery. The proposed approach is preventive because it avoids the propagation of errors at early stages by repeating low level statements until some "stability" of their behavior. © 2013 IEEE.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84897679114&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/SysTol.2013.6693902
    http://hdl.handle.net/10576/37877
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video