Shifting artificial data to detect system failures
المؤلف | Hwang, W.-Y. |
المؤلف | Lee, J.-S. |
تاريخ الإتاحة | 2015-11-08T10:27:57Z |
تاريخ النشر | 2015 |
اسم المنشور | International Transactions in Operational Research |
المصدر | Wiley Online Library |
الاقتباس | Hwang, W.-Y. and Lee, J.-S. (2015), Shifting artificial data to detect system failures. International Transactions in Operational Research, 22: 363�378. |
الرقم المعياري الدولي للكتاب | 1475-3995 |
الملخص | Multivariate statistical process control (MSPC) is used for simultaneously monitoring several process variables. While small changes to normal operating conditions made by this system may not seriously affect the quality of a product, a system failure will be declared if an observation significantly deviates from the in-control region before defective units are mass-produced. Although a number of research works integrating data-mining algorithms with MSPC have been proposed to effectively manage a large amount of data, this combination may not function for the case of system failures due to the extreme imbalance of data. This research proposes a new approach and employs a classification technique, namely, random forest, which overcomes the class imbalance problem. The proposed method systematically shifts artificial data toward the region of failures to ensure the classifier correctly detects system failures. Numerical experiments show that our method outperforms existing methods in terms of failure detection counts. |
راعي المشروع | Ministry of Education, Science and Technology. Grant Number: 2012R1A1A1012153 |
اللغة | en |
الناشر | John Wiley & Sons Ltd |
الموضوع | multivariate statistical process control failure detection artificial contrasts imbalanced classification random forests |
النوع | Article |
رقم العدد | 2 |
رقم المجلد | 22 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الميكانيكية والصناعية [1429 items ]