• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Attack-Resistant Trust Model Based on Multidimensional Trust Metrics in Underwater Acoustic Sensor Network

    Thumbnail
    Date
    2015-12
    Author
    Han, G.
    Jiang, J.
    Shu, L.
    Guizani, M.
    Metadata
    Show full item record
    Abstract
    Underwater acoustic sensor networks (UASNs) have been widely used in many applications where a variable number of sensor nodes collaborate with each other to perform monitoring tasks. A trust model plays an important role in realizing collaborations of sensor nodes. Although many trust models have been proposed for terrestrial wireless sensor networks (TWSNs) in recent years, it is not feasible to directly use these trust models in UASNs due to unreliable underwater communication channel and mobile network environment. To achieve accurate and energy efficient trust evaluation in UASNs, an attack-resistant trust model based on multidimensional trust metrics (ARTMM) is proposed in this paper. The ARTMM mainly consists of three types of trust metrics, which are link trust, data trust, and node trust. During the process of trust calculation, unreliability of communication channel and mobility of underwater environment are carefully analyzed. Simulation results demonstrate that the proposed trust model is quite suitable for mobile underwater environment. In addition, the performance of the ARTMM is clearly better than that of conventional trust models in terms of both evaluation accuracy and energy consumption.
    DOI/handle
    http://dx.doi.org/10.1109/TMC.2015.2402120
    http://hdl.handle.net/10576/3957
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video