عرض بسيط للتسجيلة

المؤلفHu, Minghui
المؤلفGao, Ruobin
المؤلفSuganthan, Ponnuthurai N.
المؤلفTanveer, M.
تاريخ الإتاحة2023-02-08T10:53:35Z
تاريخ النشر2022-12-01
اسم المنشورNeurocomputing
المعرّفhttp://dx.doi.org/10.1016/j.neucom.2022.09.148
الاقتباسHu, M., Gao, R., Suganthan, P. N., & Tanveer, M. (2022). Automated layer-wise solution for ensemble deep randomized feed-forward neural network. Neurocomputing, 514, 137-147.‏
الرقم المعياري الدولي للكتاب09252312
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139367537&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/39840
الملخصThe randomized feed-forward neural network is a single hidden layer feed-forward neural network that enables efficient learning by optimizing only the output weights. The ensemble deep learning framework significantly improves the performance of randomized neural networks. However, the framework's capabilities are limited by traditional hyper-parameter selection approaches. Meanwhile, different random network architectures, such as the existence or lack of a direct link and the mapping of direct links, can also strongly affect the results. We present an automated learning pipeline for the ensemble deep randomized feed-forward neural network in this paper, which integrates hyper-parameter selection and randomized network architectural search via Bayesian optimization to ensure robust performance. Experiments on 46 UCI tabular datasets show that our strategy produces state-of-the-art performance on various tabular datasets among a range of randomized networks and feed-forward neural networks. We also conduct ablation studies to investigate the impact of various hyper-parameters and network architectures.
اللغةen
الناشرElsevier B.V.
الموضوعAutomated machine learning
Bayesian optimization
Ensemble deep random vector functional link
Random vector functional link
Randomized feed-forward neural network
العنوانAutomated layer-wise solution for ensemble deep randomized feed-forward neural network
النوعArticle
الصفحات137-147
رقم المجلد514
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة