• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Mirjavadi, Seyed Sajad
    Alipour, Mohammad
    Emamian, Soheil
    Kord, S.
    Hamouda, A.M.S.
    Koppad, Praveennath G.
    Keshavamurthy, R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The aim of the current study is to investigate the effect of addition of TiO2 nanoparticles and friction stir welding (FSW) parameter such as number of passes on microstructure, mechanical and tribological properties of friction stir butt-welded joints of AA5083 alloy plates. The experiments were performed on AA5083 alloy based composite plates at different rotational and forward speed in the range of 300-710 rpm and 14-28 mm/min respectively. The optimized high strength value based AA5083/TiO2 composite plates were then subjected to different number of passes ranging from 1 to 4. These butt-welded regions of TiO2 reinforced and unreinforced AA5083 alloy plates were characterized using optical and scanning electron microscope (SEM) to study the microstructure, dispersion of TiO2 and grain size. The hardness and ultimate tensile strength of AA5083 composite after four passes with rotational speed of 710 rpm and forward speed of 14 mm/min was increased by 40% and 25% when compared to that of unreinforced AA5083 alloy. The wear characteristics of all butt-welded samples evaluated using pin on disc tribometer revealed better wear resistance and low friction coefficient for samples processed using four numbers of passes. The fractured tensile samples and worn out surfaces after wear testing were analyzed through SEM. The improvement in mechanical and wear properties are mainly attributed to reduced grain size, uniform dispersion of TiO2 nanoparticles and dislocation strengthening.
    DOI/handle
    http://dx.doi.org/10.1016/j.jallcom.2017.04.114
    http://hdl.handle.net/10576/39940
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video