• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-And-Conquer Framework for Multisatellite Observation Scheduling

    Thumbnail
    View/Open
    Ensemble of Metaheuristic and Exact Algorithm Based on the Divide-And-Conquer Framework for Multisatellite Observation Scheduling.pdf (2.088Mb)
    Date
    2022-10-01
    Author
    Wu, Guohua
    Luo, Qizhang
    Du, Xiao
    Chen, Yingguo
    Suganthan, Ponnuthurai Nagaratnam
    Wang, Xinwei
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multisatellite observation scheduling problem, this article proposes an ensemble of metaheuristic and exact algorithms based on a divide-And-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a metaheuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search, respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit and solve the model by using an exact method (i.e., branch and bound, B&B). The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of the EHE-DCF, we compare it with B&B, three divide-And-conquer-based metaheuristics, and a state-of-The-Art metaheuristic. Experimental results show that the EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. The EHE-DCF is especially efficient for large-scale satellite observation scheduling problems.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127043148&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TAES.2022.3160993
    http://hdl.handle.net/10576/39994
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video