• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Quantum Image Classification Using Single Qubit Encoding

    Thumbnail
    View/Open
    Efficient_Quantum_Image_Classification_Using_Single_Qubit_Encoding.pdf (5.759Mb)
    Date
    2022
    Author
    Easom-McCaldin, Philip
    Bouridane, Ahmed
    Belatreche, Ammar
    Jiang, Richard
    Al-maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    The domain of image classification has been seen to be dominated by high-performing deep-learning (DL) architectures. However, the success of this field, as seen over the past decade, has resulted in the complexity of modern methodologies scaling exponentially, commonly requiring millions of parameters. Quantum computing (QC) is an active area of research aimed toward greatly reducing problems of complexity faced in classical computing. With growing interest toward quantum machine learning (QML) for applications of image classification, many proposed algorithms require usage of numerous qubits. In the noisy intermediate-scale quantum (NISQ) era, these circuits may not always be feasible to execute effectively; therefore, we should aim to use each qubit as effectively and efficiently as possible, before adding additional qubits. This article proposes a new single-qubit-based deep quantum neural network for image classification that mimics traditional convolutional neural network (CNN) techniques, resulting in a reduced number of parameters compared with previous works. Our aim is to prove the concept of the initial proposal by demonstrating classification performance of the single-qubit-based architecture, as well as to provide a tested foundation for further development. To demonstrate this, our experiments were conducted using various datasets including MNIST, Fashion-MNIST, and ORL face datasets. To further our proposal in the context of the NISQ era, our experiments were intentionally conducted in noisy simulation environments. Initial test results appear promising, with classification accuracies of 94.6%, 89.5%, and 82.5% achieved on the subsets of MNIST, FMNIST, and ORL face datasets, respectively. In addition, proposals for further investigation and development were considered, where it is hoped that these initial results can be improved.
    DOI/handle
    http://dx.doi.org/10.1109/TNNLS.2022.3179354
    http://hdl.handle.net/10576/40328
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video