• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    WSNet - Convolutional Neural Networkbased Word Spotting for Arabic and English Handwritten Documents

    Thumbnail
    View/Open
    TEMJournalFebruary2022_264_271.pdf (537.7Kb)
    Date
    2022
    Author
    Mohammed, Hanadi Hassen
    Subramanian, Nandhini
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    This paper proposes a new convolutional neural network architecture to tackle the problem of word spotting in handwritten documents. A Deep learning approach using a novel Convolutional Neural Network is developed for the recognition of the words in historical handwritten documents. This includes a pre-processing step to re-size all the images to a fixed size. These images are then fed to the CNN for training. The proposed network shows promising results for both Arabic and English and both modern and historical documents. Four datasets - IFN/ENIT, Visual Media Lab - Historical Documents (VML-HD), George Washington and IAM datasets - have been used for evaluation. It is observed that the mean average precision for the George Washington dataset is 99.6%, outperforming other state-of-the-art methods. Historical documents in Arabic are known for being complex to work with; this model shows good results for the Arabic datasets, as well. This indicates that the architecture is also able to generalize well to other languages
    DOI/handle
    http://dx.doi.org/10.18421/TEM111-33
    http://hdl.handle.net/10576/40342
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video