• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two-stage cultivation of a Nannochloropsis mutant for biodiesel feedstock

    Thumbnail
    Date
    2015-12
    Author
    Doan, Y.T.T.
    Obbard, J.P.
    Metadata
    Show full item record
    Abstract
    Optimization of mass microalgae cultures is required for the efficient production of biodiesel feedstock in terms of total fatty acid (TFA) content and a conducive fatty acid profile. A mutant strain of Nannochloropsis sp. (MT-I5), as modified via random mutagenesis and flow cytometric cell sorting, was investigated in both a single- and two-stage cultivation using 250�L laboratory raceway ponds. Culture was based on photoautotrophic biomass production (stage 1) followed by a switch to photomixotrophic growth induced by adding sodium acetate (2�mM) (stage 2). The biomass yield of the mutant in two-stage cultivation was maintained at a level similar to that of the one-stage photoautotrophic culture, but TFA content was increased by 2.3-fold. The fatty acid profile of MT-I5 also had an increased level of desirable saturated fatty acids (SFA) for use as a biodiesel feedstock, i.e. from 43 to 48�% of TFA, as well as a decreased level of less desirable polyunsaturated fatty acids (PUFA), i.e. from 22 to 7�% of TFA. The two-stage cultivation process is of interest for the mass culture of microalgae for biofuel feedstocks, as biomass productivity can be maximized during the first stage of culture until N-starvation is achieved, followed by the enhanced synthesis of SFA in the second stage of culture by adding sodium acetate as a fixed-carbon source.
    DOI/handle
    http://dx.doi.org/10.1007/s10811-014-0490-4
    http://hdl.handle.net/10576/4081
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video