• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiple parts process planning in serial-parallel flexible flow lines: part I—process plan modeling framework

    Thumbnail
    Date
    2015-04
    Author
    Musharavati, F.
    Hamouda, A.M.S.
    Metadata
    Show full item record
    Abstract
    In recent years, integrated process planning and scheduling models have been proposed as solutions that can bridge the gap between practical process planning and production scheduling. However, most structures of these models have been algorithm-based and hence may not be very useful when a problem contains process and operational aspects that are difficult to capture in an algorithm template. In dynamic manufacturing environments, examples of such aspects include process and operational flexibilities that enable manufacturers to cope with unexpected variations in production and product mix. Appropriate process planning models that take cognizance of such aspects can be proven more useful to human process planners. In this paper, an innovative multiple parts process planning (MPPP) model for solving process planning problems with process and operational flexibilities is introduced. This model strikes a balance between process- and operations-related meta-data in a bid to capture process and operational flexibilities in the search for an optimal process planning solution. Merits of this model are discussed with reference to the operations of a typical serial-parallel flexible flow line. An illustrative example of the modeling framework is outlined. In seeking a feasible solution, a relative comparative analysis is carried out between; (a) a simulated annealing (SA) algorithm and (b) a simulated annealing algorithm that implements a mutation operator. Results show that the SA algorithm with a mutation operator outperforms the SA algorithm without a mutation operator.
    DOI/handle
    http://dx.doi.org/10.1007/s00170-014-6616-7
    http://hdl.handle.net/10576/4103
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video