عرض بسيط للتسجيلة

المؤلفMoghadam, A.A.
المؤلفAksikas, I.
المؤلفDubljevic, S.
المؤلفForbes, J.F.
تاريخ الإتاحة2016-02-08T14:21:26Z
تاريخ النشر2014-04
اسم المنشورInternational Journal of Control
المصدرScopus
الاقتباسMoghadam, A.A., Aksikas, I., Dubljevic, S., Forbes, J.F. "LQ (optimal) control of hyperbolic PDAEs." (2014) International Journal of Control, 87 (10), pp. 2156-2166.
الرقم المعياري الدولي للكتاب0020-7179
معرّف المصادر الموحدhttp://dx.doi.org/10.1080/00207179.2014.903564
معرّف المصادر الموحدhttp://hdl.handle.net/10576/4127
الملخصThe linear quadratic control synthesis for a set of coupled first-order hyperbolic partial differential and algebraic equations is presented by using the infinite-dimensional Hilbert state-space representation of the system and the well-known operator Riccati equation (ORE) method. Solving the algebraic equations and substituting them into the partial differential equations (PDEs) results in a model consisting of a set of pure hyperbolic PDEs. The resulting PDE system involves a hyperbolic operator in which the velocity matrix is spatially varying, non-symmetric, and its eigenvalues are not necessarily negative through of the domain. The C0-semigroup generation property of such an operator is proven and it is shown that the generated C 0-semigroup is exponentially stable and, consequently, the ORE has a unique and non-negative solution. Conversion of the ORE into a matrix Riccati differential equation allows the use of a numerical scheme to solve the control problem.
اللغةen
الناشرTaylor and Francis Ltd.
الموضوعcoupled PDE-algebraic system
hyperbolic PDE
infinite-dimensional system
LQ control
operator Riccati equation
العنوانLQ (optimal) control of hyperbolic PDAEs
النوعArticle
الصفحات2156-2166
رقم العدد10
رقم المجلد87


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة