LQ (optimal) control of hyperbolic PDAEs
المؤلف | Moghadam, A.A. |
المؤلف | Aksikas, I. |
المؤلف | Dubljevic, S. |
المؤلف | Forbes, J.F. |
تاريخ الإتاحة | 2016-02-08T14:21:26Z |
تاريخ النشر | 2014-04 |
اسم المنشور | International Journal of Control |
المصدر | Scopus |
الاقتباس | Moghadam, A.A., Aksikas, I., Dubljevic, S., Forbes, J.F. "LQ (optimal) control of hyperbolic PDAEs." (2014) International Journal of Control, 87 (10), pp. 2156-2166. |
الرقم المعياري الدولي للكتاب | 0020-7179 |
الملخص | The linear quadratic control synthesis for a set of coupled first-order hyperbolic partial differential and algebraic equations is presented by using the infinite-dimensional Hilbert state-space representation of the system and the well-known operator Riccati equation (ORE) method. Solving the algebraic equations and substituting them into the partial differential equations (PDEs) results in a model consisting of a set of pure hyperbolic PDEs. The resulting PDE system involves a hyperbolic operator in which the velocity matrix is spatially varying, non-symmetric, and its eigenvalues are not necessarily negative through of the domain. The C0-semigroup generation property of such an operator is proven and it is shown that the generated C 0-semigroup is exponentially stable and, consequently, the ORE has a unique and non-negative solution. Conversion of the ORE into a matrix Riccati differential equation allows the use of a numerical scheme to solve the control problem. |
اللغة | en |
الناشر | Taylor and Francis Ltd. |
الموضوع | coupled PDE-algebraic system hyperbolic PDE infinite-dimensional system LQ control operator Riccati equation |
النوع | Article |
الصفحات | 2156-2166 |
رقم العدد | 10 |
رقم المجلد | 87 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]