• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Co-pyrolysis of polyolefin mixtures and oil palm fibre for the production of liquid fuel: kinetics and thermodynamic study

    Thumbnail
    Date
    2022-05-23
    Author
    Gin, A. W.
    Hassan, H.
    Ahmad, M. A.
    Hameed, B. H.
    Din, A. T.Mohd
    Metadata
    Show full item record
    Abstract
    Studies on the co-pyrolysis of plastic waste and biomass to obtain sustainable liquid fuel, while reducing the amount of unwanted plastics and agricultural solid residues, have gained global attention recently. The purpose of this work was to investigate the thermal, kinetics, and thermodynamic events that occurred during the pyrolysis of binary polyolefin (PO) mixture, oil palm fibre (OPF), and their blends (ternary mixtures) at 5, 10, 15, and 20 °C/min using a thermogravimetric analyser (TGA). The pyrolysis and co-pyrolysis reactions at different heating rates were categorised into different reaction zones. The single reaction zone for the PO mixture started from 221 to 510 °C, while the first, second, and third reaction zones for OPF started from 30 to 132 °C, 223–315 °C, and 299–557 °C, respectively. The first, second, and third reaction zones for the co-pyrolysis of PO mixture with OPF started from 210 to 319 °C, 298–382 °C, and 375–525 °C, respectively. The enthalpy changes were in the range of 355–146 kJ/mol, 149–164 kJ/mol, and 164–261 kJ/mol for PO mixtures, OPF, and their blend, respectively, under a heating rate that ranged between 5 and 20 °C/min. The thermal analysis of these materials indicated that the activation energies needed to achieve the thermal degradation of PO mixture were higher than for the thermal degradation of the OPF. The heating rate of 10 °C/min was found to be suitable for the co-pyrolysis of the samples based on the low activation energy. The results further showed that the co-pyrolysis of polyolefin mixtures with biomass could significantly reduce the energy inputs of the process by drastically reducing the activation energy of the reaction.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130514732&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s13399-022-02822-5
    http://hdl.handle.net/10576/41527
    Collections
    • Chemical Engineering [‎1202‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video