• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of combustion synthesis method for Cu/CeO2 synthesis by integrating thermodynamics and design of experiments approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-08-04
    Author
    Parisa, Ebrahimi
    Kumar, Anand
    Khraisheh, Majeda
    Metadata
    Show full item record
    Abstract
    Solution combustion synthesis (SCS) is a commonly used method for synthesizing nanomaterials due to its energy and time efficiency. Herein, we present an analysis of synthesis parameters to optimize a targeted property by integrating results from thermodynamic calculations with Design of Experiments (DOE) approach. The analysis is conducted on Cu/CeO2, a catalyst planned to be used for CO2 conversion reaction. The SCS reaction using Cu(NO3)2 and Ce(NO3)3 precursors as oxidizers and glycine (C2H5NO2) as a fuel were thermodynamically studied in detail to provide input parameters for DOE. Estimations of the adiabatic combustion temperature and product composition at the equilibrium conditions were accomplished on the basis of Gibbs free energy minimization principle. Two of the operative parameters in SCS; the fuel to oxidizer ratio (φ), and metal loading (Cu on CeO2); were optimized using the Central Composite Design approach (CCD) and the statistical software application Minitab. The analysis of combustion system was performed for two cases; without the excess external oxygen supply, and with excess oxygen presence. The results showed that the φ variable is the most significant factor effecting the adiabatic combustion temperature and total gaseous products. On the basis of 1 mol of solid product, the optimum predicted values to have the maximum adiabatic combustion temperature and maximum gas products for both the cases of without and with the use of excess oxygen being ∼1650 K, 15 mol and ∼2550 K and 30 mol, respectively.
    URI
    https://www.sciencedirect.com/science/article/pii/S2590123022002444
    DOI/handle
    http://dx.doi.org/10.1016/j.rineng.2022.100574
    http://hdl.handle.net/10576/41603
    Collections
    • Chemical Engineering [‎1199‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video