• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward an NLP Approach for Transforming Paper Contracts into Smart Contracts

    Thumbnail
    Date
    2023
    Author
    Aejas, Bajeela
    Belhi, Abdelhak
    Bouras, Abdelaziz
    Metadata
    Show full item record
    Abstract
    Identifying and extracting information from contracts is an important task of contract analysis, which is mostly performed manually by lawyers and legal specialists. This manual analysis is a time-consuming, error-prone task. We can overcome this by automating the task of legal entity extraction using the Natural Language Processing (NLP) techniques. For extracting information from the natural language text, we can use popular NLP methods Named Entity Recognition (NER) and relation extraction (RE). Most NER and RE methods rely on machine learning and deep learning to identify relevant entities in natural language text. The main concern in adapting the AI methods for contract element extraction is the scarcity of annotated datasets in the legal field. Aiming at tackling this challenge, we decided to prepare the contract datasets for NER and RE tasks by manually annotating publicly available English contracts. This work is a part of the research aimed at automating the conversion of natural language contracts into Smart Contracts in the blockchain-based Supply Chain context. This paper explains the implementation and comparison of NER models using the deep learning methods BiLSTM and transformer-based BERT for evaluating the dataset. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
    DOI/handle
    http://dx.doi.org/10.1007/978-981-19-7663-6_70
    http://hdl.handle.net/10576/41707
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video