• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An adaptive Laplacian weight random forest imputation for imbalance and mixed-type data

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Ren, Lijuan
    Seklouli, Aicha Sekhari
    Zhang, Haiqing
    Wang, Tao
    Bouras, Abdelaziz
    Metadata
    Show full item record
    Abstract
    As the application of information technology in the medical field is resulting in a large amount of medical data. As early withdrawal and refusal of participants, there are a lot of missing values in medical data. Although various processing methods for missing values have been proposed, few methods for those medical data with characteristics of imbalance and mixed-type data. In this work, we proposed an adaptive Laplacian weight random forest, called ALWRF. In ALWRF, feature weights were adjusted dynamically when model constructing, which increases selection probabilities of features with low Laplacian score and high importance. Meanwhile, a random operator is introduced to increase the diversity of trees. Furthermore, we proposed an imputation method based on SMOTE-NC oversampling technology and the ALWRF method for imbalanced and mixed-type data, called SncALWRFI. Meanwhile, Bayesian optimization and cross-validation were employed to search optimal parameters. The experimental results showed that the ALWRF method outperforms random forest and Bayesian optimized random forest in terms of classification and regression accuracy. Further, in the experiment for missing values, the SncALWRFI showed the best imputation accuracy, and it performed high imputation effectiveness in public datasets with characteristics of imbalanced and mixed-type. 2022 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.is.2022.102122
    http://hdl.handle.net/10576/41755
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video