• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Improvement of Support Vector Machine Imputation Algorithm Based on Multiple Iteration and Grid Search Strategies

    Thumbnail
    Date
    2020
    Author
    Wang, Jie
    Li, Daiwei
    Zhang, Haiqing
    Yu, Xi
    Sekhari, Aicha
    Ouzrout, Yacine
    Bouras, Abdelaziz
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Data missing is a vitally important issue that influences the classification results in medical field. This paper proposes an improved support vector machine (SVM) imputation algorithm by using strategies of pre-imputation, multiple iteration and grid search (IG-SVMI). Based on the experimental performance, nine UCI datasets and two real datasets are used to compare the proposed algorithm with four existing imputation algorithms (RFI, KNNI, CCMVI and orthogonal coding SVMI). The datasets are considered into two types of originally containing missing value and randomly auto-generating missing of complete dataset. Classification accuracy and NRMSE are used as parameters to judge the efficient of the proposed IG-SVMI algorithm. The experiments have shown that the proposed IG-SVMI algorithm can achieve better results than the benchmark approaches. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICIoT48696.2020.9089571
    http://hdl.handle.net/10576/41762
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video