عرض بسيط للتسجيلة

المؤلفSaid, Ahmed Ben
المؤلفErradi, Abdelkarim
المؤلفAly, Hussein Ahmed
المؤلفMohamed, Abdelmonem
تاريخ الإتاحة2023-04-10T09:10:03Z
تاريخ النشر2021
اسم المنشورEnvironmental Science and Pollution Research
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s11356-021-14286-7
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41794
الملخصTo assist policymakers in making adequate decisions to stop the spread of the COVID-19 pandemic, accurate forecasting of the disease propagation is of paramount importance. This paper presents a deep learning approach to forecast the cumulative number of COVID-19 cases using bidirectional Long Short-Term Memory (Bi-LSTM) network applied to multivariate time series. Unlike other forecasting techniques, our proposed approach first groups the countries having similar demographic and socioeconomic aspects and health sector indicators using K-means clustering algorithm. The cumulative case data of the clustered countries enriched with data related to the lockdown measures are fed to the bidirectional LSTM to train the forecasting model. We validate the effectiveness of the proposed approach by studying the disease outbreak in Qatar and the proposed model prediction from December 1st until December 31st, 2020. The quantitative evaluation shows that the proposed technique outperforms state-of-art forecasting approaches. 2021, The Author(s).
راعي المشروعOpen access funding provided by the Qatar National Library.This work was made possible by the COVID-19 Rapid Response Call (RRC) grant # RRC-2-104 from the Qatar National Research Fund (a member of Qatar Foundation).
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعBi-LSTM
Clustering
COVID-19
Cumulative cases
العنوانPredicting COVID-19 cases using bidirectional LSTM on multivariate time series
النوعArticle
الصفحات56043-56052
رقم العدد40
رقم المجلد28
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة