Scalable Containerized Pipeline for Real-time Big Data Analytics
المؤلف | Aurangzaib, Rana |
المؤلف | Iqbal, Waheed |
المؤلف | Abdullah, Muhammad |
المؤلف | Bukhari, Faisal |
المؤلف | Ullah, Faheem |
المؤلف | Erradi, Abdelkarim |
تاريخ الإتاحة | 2023-04-10T09:10:04Z |
تاريخ النشر | 2022 |
اسم المنشور | Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom |
المصدر | Scopus |
الملخص | With the widespread usage of IoT, processing data streams in real-time have become very important. The traditional data-stream processing systems are inefficient in processing big data for detecting anomalies, classifications, clustering, and prediction in real-time using minimal resources. In this paper, we address this limitation by proposing a scalable pipeline for real-time processing of big data streams. Our proposed solution is capable of dynamically managing resources for different components of the pipeline using automatic scaling. The pipeline is containerized and deployed on a Kubernetes cluster. The proposed scalable pipeline is evaluated using a case study of anomaly detection in IoT data. The proposed solution yields a x 1.31 to x 2.4 increase in throughput, and x 32 to x 80 decreased latency compared to the commonly used static resource allocation strategy for data pipelines. 2022 IEEE. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Anomaly detection Auto-scaling Big Data Analytics Data Pipeline IoT Real-time |
النوع | Conference Paper |
الصفحات | 25-32 |
رقم المجلد | 2022-December |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]