• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Dental Medicine
  • Dental Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical decontamination of titanium dental implants. An in vitro biofilm model study

    Thumbnail
    View/Open
    Clinical Oral Implants Res - 2023 - Virto - Electrochemical decontamination of titanium dental implants An in vitro.pdf (3.948Mb)
    Date
    2023-02-27
    Author
    Virto, Leire
    Odeh, Verónica
    Garcia-Quismondo, Enrique
    Herrera, David
    Palma, Jesús
    Tamimi, Faleh
    Sanz, Mariano
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Objectives: The objective of this study is to study the effect of electrochemical treatment on biofilms developed on titanium dental implants, using a six-species in vitro model simulating subgingival oral biofilms. Materials and Methods: Direct electrical current (DC) of 0.75 V, 1.5 V, and 3 V (anodic polarization, oxidation processes) and of −0.75 V, −1.5 V, and -3 V (cathodic polarization, reduction processes) was applied between the working and the reference electrodes for 5 min on titanium dental implants, which have been previously inoculated with a multispecies biofilm. This electrical application consisted of a three-electrode system where the implant was the working electrode, a platinum mesh was the counter electrode, and an Ag/AgCl electrode was the reference. The effect of the electrical application on the biofilm structure and bacterial composition was evaluated by scanning electron microscopy and quantitative polymerase chain reaction. A generalized linear model was applied to study the bactericidal effect of the proposed treatment. Results: The electrochemical construct at 3 V and −3 V settings significantly reduced total bacterial counts (p <.05) from 3.15 × 106 to 1.85 × 105 and 2.92 × 104 live bacteria/mL, respectively. Fusobacterium nucleatum was the most affected species in terms of reduction in concentration. The 0.75 V and −0.75 V treatments had no effect on the biofilm. Conclusion: Electrochemical treatments had a bactericidal effect on this multispecies subgingival in vitro biofilm model, being the reduction more effective than the oxidative treatment.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85150661911&origin=inward
    DOI/handle
    http://dx.doi.org/10.1111/clr.14055
    http://hdl.handle.net/10576/42212
    Collections
    • Dental Medicine Research [‎407‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video