• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI-based UAV navigation framework with digital twin technology for mobile target visitation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Soliman, Abdulrahman
    Al-Ali, Abdulla
    Mohamed, Amr
    Gedawy, Hend
    Izham, Daniel
    Bahri, Mohamad
    Erbad, Aiman
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Unmanned Air Vehicles (UAVs), i.e. drones, have become a key enabler technology of many reconnaissance applications in different fields, such as military, maritime, and transportation. UAVs offer several benefits, such as affordability and flexibility in deployment. However, their limited flight time due to energy consumption is one of the key limitations. Therefore, it is crucial to ensure that UAVs can complete the mission while consuming the least energy possible. In this paper, we propose a novel framework for UAV smart navigation to minimize the time and energy of planning mobile targets visitation. We develop a Deep Reinforcement Learning (DRL) approach to allow the drone to learn the targets' mobility pattern and build its least energy scanning strategy accordingly. We conduct an initial evaluation of the system and our proposed DRL model policy using simulation. Then, to overcome the time-consuming exploration phase of DRL, we develop a Digital Twin (DT) environment of 3D physics-based simulator, which can be used to train the DRL agent efficiently. We also developed a testbed based on hardware integration with the parrot ANAFI drone to verify the feasibility of the proposed methodology. Our findings confirm that the DRL-based agent can achieve performance close to that of a benchmark policy. Moreover, the testbed experiment validates the practicality of utilizing the DT environment for DRL exploration. 2023 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2023.106318
    http://hdl.handle.net/10576/42792
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video