• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Health Sciences-CAS (pre 2016)
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Health Sciences-CAS (pre 2016)
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genome Editing Technology: A New Frontier for the Treatment and Prevention of Cardiovascular Diseases

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0146280623001093-main.pdf (1.268Mb)
    Date
    2023
    Author
    Saeed, Sumbul
    Khan, Shahid Ullah
    Khan, Wasim Ullah
    Abdel-Maksoud, Mostafa A.
    Mubarak, Ayman S.
    Aufy, Mohammed
    Kiani, Faisal Ayub
    Wahab, Abdul
    Shah, Muhammad Wajid
    Saleem, Muhammad Hamzah
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Over the past 2 decades, genome-editing technique has proven to be a robust editing method that revolutionizes the field of biomedicine. At the genetic level, it can be efficiently utilized to generate various disease-resistance models to elucidate the mechanism of human diseases. It also develops an outstanding tool and enables the generation of genetically modified organisms for the treatment and prevention of various diseases. The versatile and novel clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system mitigates the challenges of various genome editing techniques such as zinc-finger nucleases, and transcription activator-like effector nucleases. For this reason, it has become a ground-breaking technology potentially employed to manipulate the desired gene of interest. Interestingly, this system has been broadly utilized due to its tremendous applications for treating and preventing tumors and various rare disorders; however, its applications for treating cardiovascular diseases (CVDs) remain in infancy. More recently, 2 newly developed genome editing techniques, such as base editing and prime editing, have further broadened the accuracy range to treat CVDs under consideration. Furthermore, recently emerged CRISPR tools have been potentially applied in vivo and in vitro to treat CVDs. To the best of our knowledge, we strongly enlightened the applications of the CRISPR/Cas9 system that opened a new window in the field of cardiovascular research and, in detail, discussed the challenges and limitations of CVDs. 2023 Elsevier Inc.
    DOI/handle
    http://dx.doi.org/10.1016/j.cpcardiol.2023.101692
    http://hdl.handle.net/10576/42808
    Collections
    • Health Sciences-CAS (pre 2016) [‎151‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video