• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MMRL: A Multi-Modal Reinforcement Learning Technique for Energy-efficient Medical IoT Systems

    Thumbnail
    Date
    2021-06-28
    Author
    Abo-Eleneen, Amr
    Mohamed, Amr
    Metadata
    Show full item record
    Abstract
    The Internet of Medical Things (IoMT) couples the rapid growth of Internet of things (IoT) technologies with smart health systems, leveraging wireless battery-operated devices for remote health monitoring. Since 2019, a surge in the number of COVID-19 patients has increased rapidly, leading to increased strain on hospital resources and leaving some urgent patients behind. This is substantial cause to transform interactive health treatment into intelligent healthcare using edge computing and artificial intelligence (AI) techniques. However, running sophisticated AI-based edge computing techniques on IoT devices with limited battery is not sustainable. Hence, addressing the trade-off between energy-efficiency and smart AI techniques is imperative to maximize the device's lifetime. This paper proposes a Multi-Modal Reinforcement Learning (MMRL) algorithm that will help maximize the IoT device's lifetime using adaptive data compression, energy-efficient communication, and minimum latency, particularly for emergency events. The results showed a 500% longer battery life than the state-of-the-art algorithms in addition to high adaptability to different conditions.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125648260&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC51323.2021.9498842
    http://hdl.handle.net/10576/43341
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video