عرض بسيط للتسجيلة

المؤلفAbo-Eleneen, Amr
المؤلفAbdellatif, Alaa Awad
المؤلفMohamed, Amr
المؤلفErbad, Aiman
تاريخ الإتاحة2023-05-23T08:14:23Z
تاريخ النشر2022-04-06
اسم المنشورWireless Telecommunications Symposium
المعرّفhttp://dx.doi.org/10.1109/WTS53620.2022.9768166
الاقتباسAbo-Eleneen, A., Abdellatif, A. A., Mohamed, A., & Erbad, A. (2022, April). RLENS: RL-based Energy-Efficient Network Selection Framework for IoMT. In 2022 Wireless Telecommunications Symposium (WTS) (pp. 1-6). IEEE.
الترقيم الدولي الموحد للكتاب 978-1-7281-8678-8
الرقم المعياري الدولي للكتاب1934-5070
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130718247&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/43342
الملخصWith the emergence of smart health (s-health) applications and services, several requirements for quality have arisen to foresee and react instantaneously to emergency circumstances. Such requirements demand fast-acting wireless networks while adapting to various types of applications and environment dynamics, encouraging network operators to leverage the spectrum of wireless signals across various radio access networks. Yet, this requires implementing intelligent network selection schemes that account for heterogeneous networks characteristics and applications' QoS requirements. Thus, this paper tackles this problem by adopting an intelligent Reinforcement Learning (RL)-based network selection scheme. Specifically, we leverage edge computing capabilities to implement an efficient user-centric network selection algorithm at the Internet of Medical Things (IoMT) level to adjust the compression ratio and select the most suitable radio access network (RAN) to transfer the acquired data while considering patient state, battery life and networks dynamics. Our results demonstrate the efficiency of the proposed approach in outperforming the state-of-the-art techniques in terms of battery life by more than 500% while reaching almost 85-90% of the optimal algorithm's performance in delay and distortion.
راعي المشروعThis work was made possible by NPRP grant # NPRP12S-0305-190231 from the Qatar National Research Fund (a member of Qatar Foundation).
اللغةen
الناشرIEEE
الموضوعenergy efficiency
Internet of Things
network selection
reinforcement learning
smart health
العنوانRLENS: RL-based Energy-Efficient Network Selection Framework for IoMT
النوعConference Paper
الصفحات1-6
رقم المجلد2022-April
ESSN2690-8336
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة