عرض بسيط للتسجيلة

المؤلفRiaz, Muhammad
المؤلفAbid, Muhammad
المؤلفShabbir, Aroosa
المؤلفNazir, Hafiz Zafar
المؤلفAbbas, Zameer
المؤلفAbbasi, Saddam Akber
تاريخ الإتاحة2023-05-28T10:11:26Z
تاريخ النشر2021
اسم المنشورQuality and Reliability Engineering International
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1002/qre.2812
معرّف المصادر الموحدhttp://hdl.handle.net/10576/43488
الملخصIn practical situations, the underlying process distribution sometimes deviates from normality and their distribution is partially or completely unknown. In that instance, rather than staying with/depending on the conventional parametric control charts, we consider non-parametric control charts due to their exceptional performance. In this paper, a new non-parametric double homogeneously weighted moving average sign control chart is proposed with the least assumptions. This chart is based on a sign test statistic for catching the smaller deviations in the process location. Run-length (RL) properties of the proposed chart are studied with the help of Monte Carlo simulations. Both in-control and out-of-control RL properties show that the proposed chart is a better contender as compared to some existing charts from the literature. A real-life application for practical consideration of the proposed chart is also provided.
راعي المشروعThe authors are grateful to the anonymous reviewers for their valuable suggestions that helped in improving the initial version of the manuscript. This work is supported by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) under Project Number SB191030.
اللغةen
الناشرJohn Wiley and Sons Ltd
الموضوعaverage run length
control chart
non-parametric
normality
sign statistic
العنوانA non-parametric double homogeneously weighted moving average control chart under sign statistic
النوعArticle
الصفحات1544-1560
رقم العدد4
رقم المجلد37
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة