• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monitoring multivariate coefficient of variation for high-dimensional processes

    Thumbnail
    Date
    2022
    Author
    Adegoke, Nurudeen A.
    Dawod, Abdaljbbar
    Adeoti, Olatunde Adebayo
    Sanusi, Ridwan A.
    Abbasi, Saddam Akber
    Metadata
    Show full item record
    Abstract
    Multivariate coefficient of variation (MCV) charts are effective tools for monitoring process relative variability. They are developed on the assumption that the process subgroup size available for monitoring the MCV parameter is larger than the number of process characteristics. In such a case, the unbiased estimates of the in-control mean vector and covariance matrix are used to calculate the chart monitoring statistic. Here, we study the performance of MCV control charts when only a small subgroup size is available for estimating the in-control mean vector and covariance matrix. We examine the use of a shrinkage estimate of the covariance matrix and propose two one-sided upward and downward least absolute shrinkage and selection operator (LASSO)-based MCV charts for detecting upward and downward shifts in the process MCV parameter, respectively. Our simulation study shows that the LASSO-based MCV charts outperform the classical two one-sided MCV charts when small subgroup sizes are available for monitoring. The improved performance of the proposed LASSO-based MCV charts in monitoring shifts in the MCV parameter is demonstrated via an illustrative case study of carbon fiber tube application, where changes are detected earlier than the classical two one-sided MCV charts. 2022 John Wiley & Sons Ltd.
    DOI/handle
    http://dx.doi.org/10.1002/qre.3094
    http://hdl.handle.net/10576/43492
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video