• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Employing evolutionary artificial neural network in risk-adjusted monitoring of surgical performance

    Thumbnail
    Date
    2023
    Author
    Yeganeh, Ali
    Shadman, Alireza
    Shongwe, Sandile Charles
    Abbasi, Saddam Akber
    Metadata
    Show full item record
    Abstract
    Various applications of control charts in the field of health-care monitoring and surveillance can be found in the literature. As one of the major categories, monitoring binary outcomes of cardiac surgeries with the aim of logistic regression model for the patients' death probability has been extended by different researchers. For this aim, statistical control charts, such as cumulative sum (CUSUM) chart, are applied as a risk-adjusted method to monitoring patients' mortality rate. However, employing machine learning techniques such as artificial neural network (ANN) has not been paid attention. So, this paper proposes a novel ANN-based control chart with a heuristic training approach to monitor binary surgical outcomes by control charts. Performance of the proposed approach is investigated and compared with existing studies, based on the average run lengths (ARL) criterion and the results demonstrated a superior performance of the proposed approach. Nevertheless, to demonstrate the application of the proposed approach, some real-life applications are also provided in this paper. Furthermore, robustness of the proposed method is investigated by considering Beta distribution for the death rate in addition to the logistic model. 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s00521-023-08257-x
    http://hdl.handle.net/10576/43496
    Collections
    • Mathematics, Statistics & Physics [‎790‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video