• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An ensemble neural network framework for improving the detection ability of a base control chart in non-parametric profile monitoring

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Yeganeh, Ali
    Abbasi, Saddam A.
    Pourpanah, Farhad
    Shadman, Alireza
    Johannssen, Arne
    Chukhrova, Nataliya
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Profile monitoring is a challenging issue in statistical process control (SPC). It aims to use a functional relationship between a response variable and one or more explanatory variable(s) to summarize the quality of a process/product. Most of the existing studies consider the same form of a functional relationship for both in-control (IC) and out-of-control (OC) situations or parametric approaches. However, non-parametric profiles with different relationships in OC conditions are very common. In this paper, we propose a novel ensemble framework to monitor changes in both regression relationship and variation of the profile for Phase II applications. This approach employs a pool of artificial neural networks (ANNs) as learners to enhance the efficiency of a base control chart, which is a non-parametric exponentially weighted moving average (NEWMA) in this study. Then, a further ANN is used as a reasoning scheme (incorporator) to perform prediction by combining the outcomes of the learners. Experimental results demonstrate the effectiveness of the proposed framework, denoted by EANNN, in comparison with the base control chart, i.e., NEWMA, and other non-parametric methods. In addition, a practical example regarding a deep reactive ion-etching process from semiconductor device fabrication is provided to show the implementation of the proposed method. 2022 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2022.117572
    http://hdl.handle.net/10576/43500
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video