Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals
Author | Boubchir, Larbi |
Author | Al-Maadeed, Somaya |
Author | Bouridane, Ahmed |
Available date | 2016-05-16T10:57:30Z |
Publication Date | 2014 |
Publication Name | Proceedings - 2014 International Conference on Control, Decision and Information Technologies, CoDIT 2014 |
Resource | Scopus |
Citation | L. Boubchir, S. Al-Maadeed and A. Bouridane, "Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals," Control, Decision and Information Technologies (CoDIT), 2014 International Conference on, Metz, 2014, pp. 673-678. |
ISBN | 978-1-4799-6773-5 |
Abstract | This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu's thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier. |
Sponsor | Qatar National Research Fund under the National Priority Research Program grant (NPRP No. 09-864-1-128). |
Language | en |
Publisher | IEEE |
Subject | computational geometry electroencephalography feature extraction image segmentation medical image processing medical signal detection seizure signal classification signal representation statistical analysis support vector machines time-frequency analysis |
Type | Conference |
Pagination | 673-678 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Computer Science & Engineering [2427 items ]