• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A robust Gaussian process regression-based model for the determination of static Young's modulus for sandstone rocks

    Thumbnail
    Date
    2023
    Author
    Alakbari, Fahd Saeed
    Mohyaldinn, Mysara Eissa
    Ayoub, Mohammed Abdalla
    Muhsan, Ali Samer
    Hussein, Ibnelwaleed A.
    Metadata
    Show full item record
    Abstract
    Static Young's modulus (Es) is one of the leading mechanical rock properties. The Es can be measured from experimental lab methods. However, these methods are costly, time-consuming, and challenging to collect samples. Thus, some researchers have proposed alternative techniques, such as empirical correlations, to determine the Es. However, the previous studies have limitations: lack of accuracy, the need for specific data, and improper validation to prove the proper relationships between the inputs and outputs to show the correct physical behavior. In addition, most previous models were based on the dynamic Young's modulus. Therefore, this study aims to use the Gaussian process regression (GPR) method for Es determination using 1853 real global datasets. The utilization of global data to develop the Es prediction model is unique. The GPR model was validated by applying trend analysis to show that the correct relationships between the inputs and output are attained. Furthermore, different statistical error analyses, namely an average absolute percentage relative error (AAPRE), were performed to assess the GPR accuracy compared to current methods. This study confirmed that the GPR model has robustly and accurately predicted the Es with AAPRE of 5.41%, surpassing all the existing studied models that have AAPRE of more than 10%. The trend analysis results indicated that the GPR model follows the proper physical behaviors for all input trends. The GPR model can accurately predict the Es at different ranges of inputs. 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s00521-023-08573-2
    http://hdl.handle.net/10576/45392
    Collections
    • Chemical Engineering [‎1195‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video