Synthesis of Nanosilica for the Removal of Multicomponent Cd2+ and Cu2+ from Synthetic Water: An Experimental and Theoretical Study
Author | Al-Saida, Basel |
Author | Sandouqa, Arwa |
Author | Shawabkeh, Reyad A. |
Author | Hussein, Ibnelwaleed |
Available date | 2023-07-12T07:28:16Z |
Publication Date | 2022 |
Publication Name | Molecules |
Resource | Scopus |
Abstract | Copper and cadmium ions are among the top 120 hazardous chemicals listed by the Agency for Toxic Substances and Disease Registry (ATSDR) that can bind to organic and inorganic chemicals. Silica is one of the most abundant oxides that can limit the transport of these chemicals into water resources. Limited work has focused on assessing the applicability of nanosilica for the removal of multicomponent metal ions and studying their interaction on the surface of this adsorbent. Therefore, this study focuses on utilizing a nanosilica for the adsorption of Cd2+ and Cu2+ from water. Experimental work on the single- and multi-component adsorption of these ions was conducted and supported with theoretical interpretations. The nanosilica was characterized by its surface area, morphology, crystallinity, and functional groups. The BET surface area was 307.64 m2/g with a total pore volume of (Formula presented.) cm3/g. The SEM showed an irregular amorphous shape with slits and cavities. Several Si-O-Si and hydroxyl groups were noticed on the surface of the silica. The single isotherm experiment showed that Cd2+ has a higher uptake (72.13 mg/g) than Cu2+ (29.28 mg/g). The multicomponent adsorption equilibrium shows an affinity for Cd2+ on the surface. This affinity decreases with increasing Cu2+ equilibrium concentration due to the higher isosteric heat from the interaction between Cd and the surface. The experimental data were modeled using isotherms for the single adsorption, with the Freundlich and the non-modified competitive Langmuir models showing the best fit. The molecular dynamics simulations support the experimental data where Cd2+ shows a multilayer surface coverage. This study provides insight into utilizing nanosilica for removing heavy metals from water. 2022 by the authors. |
Sponsor | The authors would like to acknowledge the University of Jordan, Deanship of Scientific research, and the Department of Chemical Engineering for providing the facility to conduct this research; the Gas Processing Center at Qatar University for performing the characterization techniques for the samples; and Hassan Asiri from King Fahd University of Petroleum and Minerals for providing access to the dynamic molecular simulator. |
Language | en |
Publisher | MDPI |
Subject | adsorption cadmium copper heavy metals multicomponent adsorption nanosilica |
Type | Article |
Pagination | - |
Issue Number | 21 |
Volume Number | 27 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Chemical Engineering [1174 items ]
-
GPC Research [499 items ]