عرض بسيط للتسجيلة

المؤلفRasheed, Khansa
المؤلفQayyum, Adnan
المؤلفGhaly, Mohammed
المؤلفAl-Fuqaha, Ala
المؤلفRazi, Adeel
المؤلفQadir, Junaid
تاريخ الإتاحة2023-07-13T05:40:51Z
تاريخ النشر2022
اسم المنشورComputers in Biology and Medicine
المصدرScopus
الرقم المعياري الدولي للكتاب104825
معرّف المصادر الموحدhttp://dx.doi.org/10.1016/j.compbiomed.2022.106043
معرّف المصادر الموحدhttp://hdl.handle.net/10576/45570
الملخصWith the advent of machine learning (ML) and deep learning (DL) empowered applications for critical applications like healthcare, the questions about liability, trust, and interpretability of their outputs are raising. The black-box nature of various DL models is a roadblock to clinical utilization. Therefore, to gain the trust of clinicians and patients, we need to provide explanations about the decisions of models. With the promise of enhancing the trust and transparency of black-box models, researchers are in the phase of maturing the field of eXplainable ML (XML). In this paper, we provided a comprehensive review of explainable and interpretable ML techniques for various healthcare applications. Along with highlighting security, safety, and robustness challenges that hinder the trustworthiness of ML, we also discussed the ethical issues arising because of the use of ML/DL for healthcare. We also describe how explainable and trustworthy ML can resolve all these ethical problems. Finally, we elaborate on the limitations of existing approaches and highlight various open research problems that require further development. 2022 The Author(s)
راعي المشروعThis publication was made possible by NPRP grant #[ 13S-0206-200273 ] from the Qatar National Research Fund (a member of Qatar Foundation). Open Access funding is provided by the Qatar National Library. The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرElsevier
الموضوعExplainable machine learning
Healthcare
Interpretable machine learning
Trustworthiness
العنوانExplainable, trustworthy, and ethical machine learning for healthcare: A survey
النوعArticle Review
رقم المجلد149
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة