عرض بسيط للتسجيلة

المؤلفIlahi, Inaam
المؤلفUsama, Muhammad
المؤلفQadir, Junaid
المؤلفJanjua, Muhammad Umar
المؤلفAl-Fuqaha, Ala
المؤلفHoang, Dinh Thai
المؤلفNiyato, Dusit
تاريخ الإتاحة2023-07-13T05:40:52Z
تاريخ النشر2022
اسم المنشورIEEE Transactions on Artificial Intelligence
المصدرScopus
الرقم المعياري الدولي للكتاب26914581
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TAI.2021.3111139
معرّف المصادر الموحدhttp://hdl.handle.net/10576/45579
الملخصDeep reinforcement learning (DRL) has numerous applications in the real world, thanks to its ability to achieve high performance in a range of environments with little manual oversight. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, traffic controls, and autonomous vehicles) unless its vulnerabilities are addressed and mitigated. To address this problem, we provide a comprehensive survey that discusses emerging attacks on DRL-based systems and the potential countermeasures to defend against these attacks. We first review the fundamental background on DRL and present emerging adversarial attacks on machine learning techniques. We then investigate the vulnerabilities that an adversary can exploit to attack DRL along with state-of-the-art countermeasures to prevent such attacks. Finally, we highlight open issues and research challenges for developing solutions to deal with attacks on DRL-based intelligent systems. 2020 IEEE.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAdversarial machine learning
cyber-security
deep reinforcement learning (DRL)
machine learning (ML)
robust machine learning
العنوانChallenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning
النوعArticle
الصفحات90-109
رقم العدد2
رقم المجلد3
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة