عرض بسيط للتسجيلة

المؤلفAlatawi, Mohammed Naif
المؤلفAlsubaie, Najah
المؤلفUllah Khan, Habib
المؤلفSadad, Tariq
المؤلفAlwageed, Hathal Salamah
المؤلفAli, Shaukat
المؤلفZada, Islam
تاريخ الإتاحة2023-07-23T11:19:39Z
تاريخ النشر2023-02-28
اسم المنشورSecurity and Communication Networks
المعرّفhttp://dx.doi.org/10.1155/2023/8048311
الاقتباسAlatawi, M. N., Alsubaie, N., Ullah Khan, H., Sadad, T., Alwageed, H. S., Ali, S., & Zada, I. (2023). Cyber Security against Intrusion Detection Using Ensemble-Based Approaches. Security and Communication Networks, 2023.
الرقم المعياري الدولي للكتاب1939-0114
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149150226&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/46148
الملخصThe attacks of cyber are rapidly increasing due to advanced techniques applied by hackers. Furthermore, cyber security is demanding day by day, as cybercriminals are performing cyberattacks in this digital world. So, designing privacy and security measurements for IoT-based systems is necessary for secure network. Although various techniques of machine learning are applied to achieve the goal of cyber security, but still a lot of work is needed against intrusion detection. Recently, the concept of hybrid learning gives more attention to information security specialists for further improvement against cyber threats. In the proposed framework, a hybrid method of swarm intelligence and evolutionary for feature selection, namely, PSO-GA (PSO-based GA) is applied on dataset named CICIDS-2017 before training the model. The model is evaluated using ELM-BA based on bootstrap resampling to increase the reliability of ELM. This work achieved highest accuracy of 100% on PortScan, Sql injection, and brute force attack, which shows that the proposed model can be employed effectively in cybersecurity applications.
اللغةen
الناشرHindawi
الموضوعIntrusion detection
Privacy and security
swarm intelligence
العنوانCyber Security against Intrusion Detection Using Ensemble-Based Approaches
النوعArticle
رقم المجلد2023
ESSN1939-0122
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة