Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides
المؤلف | Garnier, Lionel |
المؤلف | Barki, Hichem |
المؤلف | Foufou, Sebti |
المؤلف | Puech, Loic |
تاريخ الإتاحة | 2016-06-21T13:29:06Z |
تاريخ النشر | 2014-12 |
اسم المنشور | Computers and Mathematics with Applications |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.camwa.2014.10.020 |
الاقتباس | Lionel Garnier, Hichem Barki, Sebti Foufou, Loic Puech, "Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides," Computers & Mathematics with Applications, Volume 68, Issue 12, Part A, December 2014, Pages 1689-1709 |
الرقم المعياري الدولي للكتاب | 0898-1221 |
الملخص | Ring Dupin cyclides are non-spherical algebraic surfaces of degree four that can be defined as the image by inversion of a ring torus. They are interesting in geometric modeling because: (1) they have several families of circles embedded on them: parallel, meridian, and Yvon-Villarceau circles, and (2) they are characterized by one parametric equation and two equivalent implicit ones, allowing for better flexibility and easiness of use by adopting one representation or the other, according to the best suitability for a particular application. These facts motivate the construction of circular edge triangles lying on Dupin cyclides and exhibiting the aforementioned properties. Our first contribution consists in an analytic method for the computation of Yvon-Villarceau circles on a given ring Dupin cyclide, by computing an adequate Dupin cyclide-torus inversion and applying it to the torus-based equations of Yvon-Villarceau circles. Our second contribution is an algorithm which, starting from three arbitrary 3D points, constructs a triangle on a ring torus such that each of its edges belongs to one of the three families of circles on a ring torus: meridian, parallel, and Yvon-Villarceau circles. Since the same task of constructing right triangles is far from being easy to accomplish when directly dealing with cyclides, our third contribution is an indirect algorithm which proceeds in two steps and relies on the previous one. As the image of a circle by a carefully chosen inversion is a circle, and by constructing different images of a right triangle on a ring torus, the indirect algorithm constructs a one-parameter family of 3D circular edge triangles lying on Dupin cyclides. |
راعي المشروع | NPRP grant #09-906-1-137 from the Qatar National Research Fund (a member of Qatar Foundation). |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | Circular edge right triangle Yvon-Villarceau circle Ring Dupin cyclide Ring torus Inversion |
النوع | Article |
الصفحات | 1689-1709 |
رقم العدد | 12 |
رقم المجلد | 68 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]