• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synergistic effect of Cu2+ in Fe2+/H2O2 reaction system to enhance oxytetracycline degradation in polluted water

    Thumbnail
    Date
    2023-06-01
    Author
    Alrebaki, M. A.
    Ba-Abbad, M. M.
    Abdullah, A. Z.
    Metadata
    Show full item record
    Abstract
    The higher production of HO· concentration associated with the presence of a Cu2+ co-catalyst in a Fe2+/H2O2 system is reported. The synergistic effect of the co-catalyst was investigated to evaluate the possibility of further enhancement of the oxytetracycline degradation. Several experiments with different ratios of Cu2+ to Fe2+ (0.5:5, 1:5, 2:5, 3:5, and 4.5:5) were conducted to show the effect of Cu2+ co-catalysis. The parameters studied for the degradation of OTC were the initial pH (2–7), initial concentration of OTC (5–20 mg/L), and H2O2 concentration (25–180 mg/L). Almost all OTC was completely degraded at the end of the process (60 min) by (Cu2+–Fe2+)/H2O2 when the Cu2+/Fe2+ ratio was 1:5 and initial concentrations were 20 mg/L, 60 mg/L, 2 mg/L, and 0.4 mg/L of OTC, H2O2, Fe2+, and Cu2+, respectively. The effect of natural solar light was also investigated on the degradation of OTC in the Fe2+/Cu2+ system at 60 min. The results showed that the Cu2+–Fe2+/H2O2 system was more effective than the Fe2+/H2O2 system for OTC degradation, and less inhibition effect was found with the coexistence of Cl−, CO32−, HCO3−, NO3−, and NO2− ions.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135089618&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s13762-022-04392-5
    http://hdl.handle.net/10576/46740
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video