• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comprehensive pore size characterization of Midra shale

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021-08-01
    Author
    Alessa, S.
    Sakhaee-Pour, A.
    Sadooni, F. N.
    Al-Kuwari, H. A.
    Metadata
    Show full item record
    Abstract
    Although the Middle East's carbonate reservoirs were the first and most studied rocks in the world, Middle Eastern shale reservoirs are still poorly understood compared with other unconventional formations in the US. We investigate the pore-throat size and pore-body size distributions of Midra shale in Qatar to quantify the pore-scale features that control transport properties at the core scale. We measured the capillary pressure by injecting mercury into samples in drainage. The capillary pressure variation with wetting phase saturation exhibits a plateau-like trend, which differs from the linear trend observed in most shales in the US. The capillary pressure measurements quantify the pore-throat size distribution. We also measure nitrogen adsorption and analyze the measurements to determine the pore-body size distribution. This study shows that the pore-throat size has a narrow distribution, and its average is close to 22 nm. In addition, the pore-body size has a wide distribution, and its average is 18 nm. Thus, the transport properties dependent on the pore-throat size require modifications to account for the pore proximity to represent subsurface conditions. The transport properties, such as density, relevant to the pore volume in the matrix can be estimated with reasonable accuracy from the gas composition in wider conduits. The presented results have applications for the development of unconventional gas, which is the cleanest fossil fuel.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102576479&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.petrol.2021.108576
    http://hdl.handle.net/10576/47336
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video