Data-driven modeling to predict the load vs. displacement curves of targeted composite materials for industry 4.0 and smart manufacturing
المؤلف | Kazi, M.-K. |
المؤلف | Eljack, F. |
المؤلف | Mahdi, E. |
تاريخ الإتاحة | 2023-09-10T17:35:33Z |
تاريخ النشر | 2021 |
اسم المنشور | Composite Structures |
المصدر | Scopus |
الملخص | This work presents an approach for smart manufacturing focusing on Industry 4.0 to predict the load vs. displacement curve of targeted cotton fiber/Polypropylene (PP) composite materials while complying with the required intended properties. Experimental data for varying composite fiber percentage to characteristic load and earlier built artificial neural network (ANN) models are used as the feed. A newly built ANN model is being trained and tested on the TensorFlow backend using the Keras library in Python to predict the load vs. displacement curves for any in-between values of the experimental range (e.g., 0-50% cotton fiber filler content in PP) without doing any further experiment. Finally, a Python package for the sparse identification of nonlinear dynamical (PySINDy) systems is used to identify the exact data-driven ANN model through the system identification, which will facilitate the effective implementation of the control algorithms, smart internet of things (IoT), and high-tech automated system. 2020 Elsevier Ltd |
راعي المشروع | This paper was made possible by NPRP grant No 10-0205-170347 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s]. |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | Artificial neural network Data-driven modeling Fiber-reinforced polymer Industry 4.0 Machine learning Smart manufacturing |
النوع | Article |
رقم المجلد | 258 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكيميائية [1174 items ]
-
الهندسة الميكانيكية والصناعية [1396 items ]