• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of water capture technologies for gas fired power plants in Qatar

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Yasir, Ahmed T.
    Eljack, Fadwa
    Kazi, Monzure-Khoda
    Metadata
    Show full item record
    Abstract
    Flue gas from gas fired power plants contains 10-16% (w/w) water vapor with considerable amount of latent heat. Although CO2 capture and utilization have received great attention, water capture from power plant has received limited attention. The power plants in Qatar exhaust 33 Million m3 of water per year. This paper explores selected alternative technologies namely absorption, compression & cooling, and quenching, to enable the recovery of water vapor contained in a base case 750 MW power plant flue gas streams. The alternatives for water capture were modeled and optimized over a wide range of operating conditions (pressure, temperature, and flow rate). Using data from an actual gas fired power plant in the state of Qatar, simulation studies were carried out and optimized for all modeled technologies to minimize production cost using Aspen HYSYS V8.6. The results show that the quench unit, operated at pertinent water circulation temperature (50 C), pressure (6 atm), and flowrate of 3500 m3/h (recyclable), can extract up to 80.7% of the water in the flue gas. Apart from production cost and water capture percentage, criteria used to screen the alternative technologies were payback period, CO2e emission and brine reduction rate. The research work determined that the quench alternative had the lowest payback period (8.8 years), lowest CO2 emission rate (13 kg CO2/m3 H2O) and highest brine reduction (3.44%) among all the tested alternatives. The proposed quench water-recovery technology will have added value to Qatar and other nations with limited water resources, specifically those with access to natural gas resources. 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.cherd.2019.12.013
    http://hdl.handle.net/10576/47369
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video