• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integration of Safety in the Optimization of Transporting Hazardous Materials

    Thumbnail
    Date
    2018
    Author
    Zhang, C.
    Nguyen, C.
    Eljack, F.
    Linke, P.
    El-Halwagi, M.M.
    Metadata
    Show full item record
    Abstract
    The development of fully integrated supply chain networks has drawn much attention due to industrial integration and globalization. Inter-plant transportation of chemicals plays a central role in enabling efficient supply chains and eco-industrial parks. The transported materials often include hazardous material (HazMat) for which safety is a major concern. This paper presents a HazMat transportation model that considers both economic and safety objectives. The study uses historical incident data for HazMat from the U.S Department of Transportation (USDOT) to quantify the transportation risk, and the epsilon-constraint method is then applied to integrate risk into the optimization framework. A case study was conducted for methanol transportation using both highway and railroad. The results of this study illustrate a Pareto optimal curve that shows the trade-off between transportation cost and risk. By solving the optimization problem, the optimum transportation cost at each discretized risk value can be determined, and the two objectives can be correlated for further decision-making. The HazMat transportation model provides a flexible framework to integrate more factors into the traditional transportation or material allocation problem in the future. 2018, Springer Nature Singapore Pte Ltd.
    DOI/handle
    http://dx.doi.org/10.1007/s41660-018-0063-0
    http://hdl.handle.net/10576/47372
    Collections
    • Chemical Engineering [‎1065‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video