• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ionic liquid design for enhanced carbon dioxide capture - A computer aided molecular design approach

    Thumbnail
    Date
    2014
    Author
    Chong, F.K.
    Eljack, F.T.
    Atilhan, M.
    Foo, D.C.Y.
    Chemmangattuvalappil, N.G.
    Metadata
    Show full item record
    Abstract
    Greenhouse gases emission is known as the main factor of climate change, and carbon dioxide (CO2) makes up vast majority of them. Carbon capture and storage (CCS) is a vital technology to mitigate industrial CO2 emissions, which is mainly generated in power plants. Currently, post-combustion capture based on aqueous amine scrubbing is considered as the most suitable technology for CO2 capture. However, the use of amine for CO2 capture has some disadvantages, such as high energy required for solvent regeneration, high solvent loss, and degradation of solvent. Recently, ionic liquids (ILs) are considered as potential alternative, because they have negligible vapour pressure, and high thermal stability. In addition, through matching of cations and anions, ILs provide a flexibility to tune their properties. However, due to vast number of potential ILs, time and expense required to obtain the optimal ILs for CO2 absorption through experimentation is unaffordable. This work presents a Computer-Aided Molecular Design (CAMD) approach for the design and selection of optimal ILs specifically for the purpose of CO2 capture. The approach utilises group contribution method to estimate the thermophyscial properties of ILs, by considering the structural constraints and allowed combination of cations and anions. Predicted properties of the potential candidates are in good agreement of experimentally measured properties. Copyright 2014 AIDIC Servizi S.r.l.
    DOI/handle
    http://dx.doi.org/10.3303/CET1439043
    http://hdl.handle.net/10576/47376
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video