Show simple item record

AuthorJaradat, M. M. M.
AuthorBaniabedalruhman, A.
AuthorBataineh, M. S.
AuthorJaradat, A. M. M.
AuthorAl-Rhayyel, A. A.
Available date2023-11-09T05:37:20Z
Publication Date2022
Publication NameAKCE International Journal of Graphs and Combinatorics
ResourceScopus
ISSN9728600
URIhttp://dx.doi.org/10.1080/09728600.2022.2145922
URIhttp://hdl.handle.net/10576/49095
AbstractLet (Formula presented.) denote the class of non-bipartite graphs on n vertices containing no (Formula presented.) -graph and (Formula presented.) Let (Formula presented.) denote the class of non-bipartite Hamiltonian graphs on n vertices containing no (Formula presented.) -graph and (Formula presented.) In this paper we determine (Formula presented.) by proving that for sufficiently large odd n, (Formula presented.) Furthermore, the bound is best possible. Our results confirm the conjecture made by Bataineh in 2007.
SponsorOpen Access funding provided by the Qatar National Library.
Languageen
PublisherTaylor and Francis Ltd.
Subject05C35
05C55
complete graph
Ramsey number
theta graph
TitleEdge-maximal -free non-bipartite Hamiltonian graphs of odd order
TypeArticle
Pagination282-286
Issue Number3
Volume Number19
dc.accessType Open Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record