• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New solitary wave and computational solitons for Kundu-Eckhaus equation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2211379722006982-main.pdf (1.006Mb)
    Date
    2022
    Author
    Jaradat, M.M.M.
    Batool, Amna
    Butt, Asma Rashid
    Raza, Nauman
    Metadata
    Show full item record
    Abstract
    The goal of this research is to find novel optical solutions to the Kundu-Eckhaus equation, which possess crucial roles in the field of nonlinear optics. A collective variable (CV) strategy is adopted to solve governing equation including the Raman effect and quintic nonlinearity. This method is a suitable to deal with both conservative and non-conservative systems by exposing a set of equations of motion regardless of nonlinearities or dissipative components. The parameters employed in this approach are chirp, temporal position, phase, amplitude, frequency and width, namely, collective variables. The fourth order Runge-Kutta technique is a well-known numerical scheme that aims towards the solution of the resulting system of ordinary differential equations representing the variables involved in the pulse ansatz. This technique presents the evolution of pulse parameters with regard to propagation variables. The graphical profiles at suitable values of pulse parameters are also provided. The unified technique is also applied to find soliton solutions. The obtained solution is a periodic solitary wave, showed graphically. The results developed in this article are found to be new in the literature and the approach utilized, can be applied to solve a variety of nonlinear problems in the mathematical sciences.
    DOI/handle
    http://dx.doi.org/10.1016/j.rinp.2022.106084
    http://hdl.handle.net/10576/49103
    Collections
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video